MEASURING THE UNMEASURABLE

WHY MEASUREMENTS ALONE CANNOT QUANTIFY AEROSOL RADIATIVE FORCING OF CLIMATE CHANGE

Stephen E. Schwartz

Symposium on
The Global Aerosol System:
Global and Regional Assessments

http://www.ecd.bnl.gov/steve/schwartz.html

GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter

Modified from Ramanathan, 1987

REQUIREMENTS FOR DETERMINING AEROSOL RADIATIVE FORCING OF CLIMATE CHANGE

Perturbation of net irradiance at the top of the atmosphere (TOA) due to **anthropogenic** aerosols.

Accuracy better than ± 0.5 W m⁻² (Schwartz, AGU, Fall, 2003; JAWMA, 2004).

Based on determining climate sensitivity to $\pm 30\%$.

Hypothesis: Forcings of troposphere–surface system are additive and fungible in global-annual average.

Requirement: Anthropogenic aerosol radiative flux perturbation as a function of space $(360^{\circ} \times 180^{\circ})$ and time (24×365) .

Challenges: Aerosol forcing is highly variable in space and time.

Total upwelling shortwave irradiance is highly variable in space and time.

1. Satellite Irradiance Method

Satellite determination of upwelling irradiance.

Compare to modeled aerosol-free irradiance.

STRENGTHS	LIMITATIONS/CONCERNS
Global coverage.	Requires model of total upwelling clear-sky irradiance including surface irradiance.
	Satellite calibration.
	Scene contamination by clouds (wide FOV).
	Bias toward low humidity (cloud free).
	Aerosol irradiance is small fraction of total.
	Sparse temporal coverage.
	No attribution to anthro.

AEROSOL FORCING FROM SATELLITE IRRADIANCE

Annual-average difference between measured irradiance and model without aerosol for cloud-free sky – Global average -6.74 W m⁻²

Haywood et al., Science, 1999

No attribution to substances.

Difference field incorporates all errors in modeled irradiance.

2. Satellite AOT Method

Satellite determination of aerosol contribution to path radiance.

Model aerosol radiance to aerosol optical thickness (AOT).

Model TOA forcing from AOT.

STRENGTHS	LIMITATIONS/CONCERNS
Global coverage.	Non-aerosol contribution to path radiance.
	Radiance-to-AOT conversion.
	Sensitivity to aerosol optical properties.
	Accuracy of satellite AOT.
	AOT-to-forcing conversion.
	Sensitivity to aerosol optical properties.
	Sparse temporal coverage.
	No attribution to anthro.

COMPARISON OF SATELLITE AND GROUND BASED MEASUREMENTS OF AEROSOL OPTICAL THICKNESS

Monthly-mean AVHRR measurements over oceans (550 nm) vs. AERONET

COMPARISON OF SATELLITE AND GROUND BASED MEASUREMENTS OF AEROSOL OPTICAL THICKNESS

Monthly-mean measurements over oceans

Satellite data at 550 nm, AERONET data mean of 440 (500) and 670 nm

COMPARISON OF SATELLITE AND GROUND-BASED MEASUREMENTS OF AEROSOL OPTICAL THICKNESS

Individual measurements over *land stations*

MISR data at 558 nm, AERONET data interpolated from 440 and 675 nm

Liu et al, JGR, 2004

Accuracy within ±0.02 ±0.10 AOT (excluding outliers and sites influenced by desert dust).

3. Ground-based AOT Method

Ground-based measurement of AOT.

Model TOA forcing from AOT.

STRENGTHS	LIMITATIONS/CONCERNS
Unequivocal AOT	AOT-to-forcing conversion.
Temporal coverage	Sensitivity to aerosol optical properties.
	Sparse spatial coverage.
	No attribution to anthro.

AEROSOL OPTICAL DEPTH

Determined by sunphotometry

North central Oklahoma - Daily average at 500 nm

J. Michalsky et al., JGR, 2001

FORCING PER OPTICAL DEPTH

Global average, cloud-free sky - Scattering aerosol

Forcing per optical depth depends rather strongly on particle size.

Forcing accuracy $0.5~W~m^{-2}$ requires optical depth accuracy 0.005~-0.01~(0.01~-0.02~for~60%~cloud~cover).

FORCING PER OPTICAL DEPTH

Global average, cloud-free sky - Absorbing aerosol

Forcing per optical depth depends rather strongly on particle size – and also rather strongly on aerosol absorption.

4. Surface Forcing Method

Ground-based measurement of aerosol surface forcing.

Model TOA forcing from AOT.

STRENGTHS	LIMITATIONS/CONCERNS
Unequivocal surface forcing (Rayleigh background).	Surface-to-TOA forcing conversion. Sensitivity to aerosol optical properties.
(Tal) Telgii eaengi eaila).	Sparse spatial coverage.
	Sparse temporal coverage (cloud free only). Bias to low RH.
	No attribution to anthro.

AEROSOL FORCING OF SURFACE IRRADIANCE

Dependence on aerosol optical thickness Cloud-free sky, DOE ARM Site, North Central Oklahoma

Aerosol scattering decreases direct irradiance, increases diffuse irradiance.

Aerosols decrease total surface irradiance (direct + diffuse) mainly because of upward scattering (top-of-atmosphere forcing) and to lesser extent enhanced atmospheric absorption.

5. In-situ Measurements Method

In-situ measurement of aerosol optical properties, [chemical, microphysical properties].

Radiation transfer modeling of forcing.

CI	מח"		LTC	
	K	l T	\Box	

LIMITATIONS/CONCERNS

Account for cloudiness [Account for f(RH)] [Attribution to anthro]

Sparse spatial coverage Sparse temporal coverage

INTERCOMPARISON OF BROADBAND SHORTWAVE FORCING BY AMMONIUM SULFATE AEROSOL

Normalized global-average forcing: W m⁻² / g(SO₄²-) m⁻² or W /g(SO₄²-)

Aerosol optical depth 0.2; surface albedo 0.15

Standard deviation ~8% for 15 models at radius ~ 200 nm.

Boucher, Schwartz and 28 co-authors, JGR, 1998

Radiation transfer models agree closely for well specified aerosol.

6. Chemical Transport Modeling Method

Chemical-microphysical modeling of aerosol loading and properties

Radiation transfer modeling of forcing

STRENGTHS	LIMITATIONS/CONCERNS
Spatial coverage	Accuracy of modeled aerosol loading and
Temporal coverage	properties:
Account for cloudiness and	Sources
f(RH)	Transformation
Accurate forcing estimates	Removal
Attribution to anthro	Need to evaluate model!

MODEL-OBSERVATION COMPARISONS

BNL CTM driven by assimilated meteorological data Observed 24-hour sulfate mixing ratio, June-July 1997

Date, Jun/Jul 1997

MODEL-OBSERVATION COMPARISONS

5083 24-Hour sulfate mixing ratio in BNL CTM driven by assimilated meteorological data - June-July 1997

56% of comparisons within factor of 2; 92% within factor of 5.

SIZE DISTRIBUTIONS

Comparison of Measurement and Retrieval from Model At 3 Altitudes near Nashville TN

SEASALT AEROSOL MASS CONCENTRATION

Modeled and observed annual concentrations From IPCC (2001) intercomparison

⁶⁶After throwing out the burdens from models that were outliers in terms of their comparison with observations, the model results for sea salt still differed by a factor of 4.9 and 5.3, for diameter less than and greater than 2 μm, respectively. . . . In the upper troposphere . . . the range increased to as much as a factor of 20 or more. ⁹⁹

INDIRECT EFFECT

SENSITIVITY OF ALBEDO AND FORCING TO CLOUD DROP CONCENTRATION

Schwartz and Slingo (1996)

Indirect forcing is highly sensitive to small perturbations in cloud drop concentration.

A 30% increase in cloud drop concentration results in a forcing of ~1 W m⁻².

CONCLUSIONS AND FUTURE DIRECTIONS

- No silver bullet.
- Radiative measurements must play a key role, but ...
- Chemical transport models, based on understanding of the pertinent chemical and physical processes and extensively evaluated by comparison with observations are essential to interpretation of aerosol radiative influences and attribution to forcing agents.

THANK YOU

http://www.ecd.bnl.gov/steve/schwartz.html